Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5676, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453942

RESUMO

Actinobacteria are one of the predominant groups that successfully colonize and survive in various aquatic, terrestrial and rhizhospheric ecosystems. Among actinobacteria, Nocardia is one of the most important agricultural and industrial bacteria. Screening and isolation of Nocardia related bacteria from extreme habitats such as endolithic environments are beneficial for practical applications in agricultural and environmental biotechnology. In this work, bioinformatics analysis revealed that a novel strain Nocardia mangyaensis NH1 has the capacity to produce structurally varied bioactive compounds, which encoded by non-ribosomal peptide synthases (NRPS), polyketide synthase (PKS), and post-translationally modified peptides (RiPPs). Among NRPS, five gene clusters have a sequence homology with clusters encoding for siderophore synthesis. We also show that N. mangyaensis NH1 accumulates both catechol- and hydroxamate-type siderophores simultaneously under iron-deficient conditions. Untargeted LC-MS/MS analysis revealed a variety of metabolites, including siderophores, lipopeptides, cyclic peptides, and indole-3-acetic acid (IAA) in the culture medium of N. mangyaensis NH1 grown under iron deficiency. We demonstrate that four CAS (chrome azurol S)-positive fractions display variable affinity to metals, with a high Fe3+ chelating capability. Additionally, three of these fractions exhibit antioxidant activity. A combination of iron scavenging metabolites produced by N. mangyaensis NH1 showed antifungal activity against several plant pathogenic fungi. We have shown that the pure culture of N. mangyaensis NH1 and its metabolites have no adverse impact on Arabidopsis seedlings. The ability of N. mangyaensis NH1 to produce siderophores with antifungal, metal-chelating, and antioxidant properties, when supplemented with phytohormones, has the potential to improve the release of macro- and micronutrients, increase soil fertility, promote plant growth and development, and enable the production of biofertilizers across diverse soil systems.


Assuntos
Actinobacteria , Nocardia , Nocardia/genética , Nocardia/metabolismo , Sideróforos/metabolismo , Ecossistema , Antifúngicos/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Actinobacteria/metabolismo , Ferro/metabolismo , Bactérias/metabolismo , Genômica , Metaboloma , Solo
2.
Plants (Basel) ; 13(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38337920

RESUMO

The ends of linear chromosomes of most eukaryotes consist of protein-bound DNA arrays called telomeres, which play essential roles in protecting genome integrity. Despite general evolutionary conservation in function, telomeric DNA is known to drastically vary in length and sequence between different eukaryotic lineages. Bryophytes are a group of early diverging land plants that include mosses, liverworts, and hornworts. This group of ancient land plants recently emerged as a new model for important discoveries in genomics and evolutionary biology, as well as for understanding plant adaptations to a terrestrial lifestyle. We measured telomere length in different ecotypes of model bryophyte species, including Physcomitrium patens, Marchantia polymorpha, Ceratodon purpureus, and in Sphagnum isolates. Our data indicate that all analyzed moss and liverwort genotypes have relatively short telomeres. Furthermore, all analyzed ecotypes and isolates of model mosses and liverworts display evidence of substantial natural variation in telomere length. Interestingly, telomere length also differs between male and female strains of the dioecious liverwort M. polymorpha and dioecious moss C. purpureus. Given that bryophytes are extraordinarily well adapted to different ecological niches from polar to tropical environments, our data will contribute to understanding the impact of natural telomere length variation on evolutionary adaptations in this ancient land plant lineage.

3.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139024

RESUMO

The analysis of telomere length is an important component of many studies aiming to characterize the role of telomere maintenance mechanisms in cellular lifespan, disease, or in general chromosome protection and DNA replication pathways. Several powerful methods to accurately measure the telomere length from Southern blots have been developed, but their utility for large-scale genomic studies has not been previously evaluated. Here, we performed a comparative analysis of two recently developed programs, TeloTool and WALTER, for the extraction of mean telomere length values from Southern blots. Using both software packages, we measured the telomere length in two extensive experimental datasets for the model plant Arabidopsis thaliana, consisting of 537 natural accessions and 65 T-DNA (transfer DNA for insertion mutagenesis) mutant lines in the reference Columbia (Col-0) genotype background. We report that TeloTool substantially overestimates the telomere length in comparison to WALTER, especially for values over 4500 bp. Importantly, the TeloTool- and WALTER-calculated telomere length values correlate the most in the 2100-3500 bp range, suggesting that telomeres in this size interval can be estimated by both programs equally well. We further show that genome-wide association studies using datasets from both telomere length analysis tools can detect the most significant SNP candidates equally well. However, GWAS analysis with the WALTER dataset consistently detects fewer significant SNPs than analysis with the TeloTool dataset, regardless of the GWAS method used. These results imply that the telomere length data generated by WALTER may represent a more stringent approach to GWAS and SNP selection for the downstream molecular screening of candidate genes. Overall, our work reveals the unanticipated impact of the telomere length analysis method on the outcomes of large-scale genomic screens.


Assuntos
Estudo de Associação Genômica Ampla , Telomerase , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero , Southern Blotting , Genômica , Telomerase/metabolismo
4.
Res Sq ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961382

RESUMO

Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a - deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.

5.
Microorganisms ; 11(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37317110

RESUMO

Phosphate solubilizing microorganisms (PSMs) in soil have been shown to reduce mineral phosphate fertilizer supplementation and promote plant growth. Nevertheless, only several P-solubilizing microorganisms capable of solubilizing both organic and mineral sources of soil phosphorus have been identified up to now. The aim of this study was to evaluate the inorganic soil phosphate solubilizing activity of phytate-hydrolyzing Pantoea brenneri soil isolates. We showed that the strains efficiently solubilize a variety of inorganic phosphates. We optimized the media composition and culturing conditions to improve the solubilization efficiency of the strains and investigated the mechanisms of their phosphate solubilization. Through HPLC analysis, it was determined that P. brenneri produce oxalic, malic, formic, malonic, lactic, maleic, acetic, and citric acids as well as acid and alkaline phosphatases while growing on insoluble phosphate sources. Finally, we analyzed the influence of P. brenneri strains with multiple PGP-treats on plant growth in greenhouse experiments and showed their ability to promote growth of potato.

6.
Microorganisms ; 11(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37374988

RESUMO

Bacillus subtilis is traditionally classified as a PGPR that colonizes plant roots through biofilm formation. The current study focused on investigating the influence of various factors on bacilli biofilm formation. In the course of the study, the levels of biofilm formation by the model strain B. subtilis WT 168 and on its basis created regulatory mutants, as well as strains of bacilli with deleted extracellular proteases under conditions of changes in temperature, pH, salt and oxidative stress and presence of divalent metals ions. B. subtilis 168 forms halotolerant and oxidative stress-resistant biofilms at a temperature range of 22 °C-45 °C and a pH range of 6-8.5. The presence of Ca2+, Mn2+ and Mg2+ upsurges the biofilm development while an inhibition with Zn2+. Biofilm formation level was higher in protease-deficient strains. Relative to the wild-type strain, degU mutants showed a decrease in biofilm formation, abrB mutants formed biofilms more efficiently. spo0A mutants showed a plummeted film formation for the first 36 h, followed by a surge after. The effect of metal ions and NaCl on the mutant biofilms formation is described. Confocal microscopy indicated that B. subtilis mutants and protease-deficient strains differ in matrix structure. The highest content of amyloid-like proteins in mutant biofilms was registered for degU-mutants and protease-deficient strains.

7.
Microorganisms ; 11(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375011

RESUMO

Due to their capacity to produce antimicrobial peptides that can prevent the growth of diseases, many Bacillus spp. are beneficial to plants. In this study, we looked into the antagonistic activity of the B. pumilus 3-19 strain and its derivatives following targeted genome editing. Two peptide genes with antibacterial action, bacilysin (bac) and bacteriocin (bact), and the sigF gene, which encodes the sigma factor of sporulation, were specifically inactivated using the CRISPR-Cas9 system in the genome of B. pumilus 3-19. Antibacterial activity against B. cereus and Pantoea brenneri decreased as a result of the inactivation of target genes in the B. pumilus 3-19 genome, with a noticeable effect against bacilysin. The growth dynamics of the culture changed when the bac, bact, and sigF genes were inactivated, and the altered strains had less proteolytic activity. An asporogenic mutant of B. pumilus 3-19 was obtained by inactivating the sigF gene. It has been proven that bacilysin plays a unique part in the development of B. pumilus 3-19's antagonistic action against soil microorganisms.

8.
Metabolites ; 13(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36984790

RESUMO

The emergence of bacterial drug resistance is often viewed as the next great health crisis of our time. While more antimicrobial agents are urgently needed, very few new antibiotics are currently in the production pipeline. Here, we aim to identify and characterize novel antimicrobial natural products from a model dioicous moss, Ceratodon purpureus. We collected secreted moss exudate fractions from two C. purpureus strains, male R40 and female GG1. Exudates from the female C. purpureus strain GG1 did not exhibit inhibitory activity against any tested bacteria. However, exudates from the male moss strain R40 exhibited strong inhibitory properties against several species of Gram-positive bacteria, including Staphylococcus aureus and Enterococcus faecium, though they did not inhibit the growth of Gram-negative bacteria. Antibacterial activity levels in C. purpureus R40 exudates significantly increased over four weeks of moss cultivation in liquid culture. Size fractionation experiments indicated that the secreted bioactive compounds have a relatively low molecular weight of less than 1 kDa. Additionally, the R40 exudate compounds are thermostable and not sensitive to proteinase K treatment. Overall, our results suggest that the bioactive compounds present in C. purpureus R40 exudates can potentially add new options for treating infections caused by antibiotic-resistant Gram-positive bacteria.

9.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203233

RESUMO

The minor secreted proteinase of B. pumilus 3-19 MprBp classified as the unique bacillary adamalysin-like enzyme of the metzincin clan. The functional role of this metalloproteinase in the bacilli cells is not clear. Analysis of the regulatory region of the mprBp gene showed the presence of potential binding sites to the transcription regulatory factors Spo0A (sporulation) and DegU (biodegradation). The study of mprBp activity in mutant strains of B. subtilis defective in regulatory proteins of the Spo- and Deg-systems showed that the mprBp gene is partially controlled by the Deg-system of signal transduction and independent from the Spo-system.


Assuntos
Bacillus pumilus , Bacillus , Lacticaseibacillus casei , Bacillus pumilus/genética , Metaloendopeptidases , Biodegradação Ambiental , Firmicutes
10.
3 Biotech ; 12(11): 326, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36276447

RESUMO

In recent years, plant growth-promoting rhizobacteria (PGPR) have received increased attention due to their prospective use as biofertilizers for the enhancement of crop growth and yields. However, there is a growing need to identify new PGPR isolates with additional beneficial properties. In this paper, we describe the identification of a new strain of a non-sporulating Gram-positive bacterium isolated from the rhizosphere of potato plants, classified as Brevibacterium sediminis MG-1 based on whole-genome sequencing. The bacteria are aerobic; they grow in a pH range of 6.0-10.0 (optimum 6.0), and a temperature range of 20-37 °C (optimum 30 °C). At 96 h of cultivation, strain MG-1 synthesizes 28.65 µg/ml of indole-3-acetic acid (IAA) when 500 µg/ml of l-tryptophan is added. It is a producer of catechol-type siderophores and ACC deaminase (213 ± 12.34 ng/ml) and shows halotolerance. Treatment of pea, rye, and wheat seeds with a suspension of MG-1 strain cells resulted in the stimulation of stem and root biomass accumulation by 12-26% and 6-25% (P < 0.05), respectively. Treatment of seeds with bacteria in the presence of high salt concentration reduced the negative effects of salt stress on plant growth by 18-50%. The hypothetical gene lin, encoding the bacteriocin Linocin-M18, RIPP-like proteins, and polyketide synthase type III (T3PKS) loci, gene clusters responsible for iron acquisition and metabolism of siderophores, as well as gene clusters responsible for auxin biosynthesis, were identified in the B. sediminis MG-1 genome. Thus, the rhizosphere-associated strain B. sediminis MG-1 has growth-stimulating properties and can be useful for the treatment of plants grown on soils with high salinity. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03392-z.

11.
mSphere ; 7(6): e0021222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36218346

RESUMO

Bacteria can quickly adapt to constantly changing environments through a number of mechanisms, including secretion of secondary metabolites, peptides, and proteins. Serratia marcescens, an emerging pathogen with growing clinical importance due to its intrinsic resistance to several classes of antibiotics, can cause an array of infections in immunocompromised individuals. To better control the spread of S. marcescens infections, it is critical to identify additional targets for bacterial growth inhibition. We found that extracellular metabolites produced by the wild-type organism in response to peroxide exposure had a protective effect on an otherwise-H2O2-sensitive ΔmacAB indicator strain. Detailed analysis of the conditioned medium demonstrated that the protective effect was associated with a low-molecular-weight heat-sensitive and proteinase K-sensitive metabolite. Furthermore, liquid chromatography-tandem mass spectrometry analysis of the low-molecular-weight proteins present in the conditioned medium led to identification of the previously uncharacterized DUF1471-containing protein TBU67220 (SrfN). We found that loss of the srfN gene did not have an impact on the production of extracellular enzymes. However, the S. marcescens mutant lacking SrfN was significantly more sensitive to growth in medium with a low pH and to exposure to oxidative stress. Both defects were fully rescued by complementation. Thus, our results indicate that SrfN, a low-molecular-weight DUF1471-containing protein, is involved in S. marcescens SM6 adaptation to adverse environmental conditions. IMPORTANCE Serratia marcescens is ubiquitous in the environment and can survive in water, soil, plants, insects, and animals, and it can also cause infections in humans. In the face of disturbances such as oxidative or low-pH stress, bacteria adapt, survive, and recover through several mechanisms, including changes in their secretome. We show that a hydrogen peroxide-exposed S. marcescens milieu contains a small previously uncharacterized DUF1471-containing protein similar to the SrfN protein in Salmonella enterica serovar Typhimurium, and we illustrate the role of this protein in bacterial survival during acid and oxidative stresses.


Assuntos
Peróxido de Hidrogênio , Serratia marcescens , Humanos , Animais , Serratia marcescens/genética , Serratia marcescens/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Meios de Cultivo Condicionados , Antibacterianos/metabolismo , Estresse Oxidativo
12.
Antibiotics (Basel) ; 11(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892395

RESUMO

Plants synthetize a large spectrum of secondary metabolites with substantial structural and functional diversity, making them a rich reservoir of new biologically active compounds. Among different plant lineages, the evolutionarily ancient branch of non-vascular plants (Bryophytes) is of particular interest as these organisms produce many unique biologically active compounds with highly promising antibacterial properties. Here, we characterized antibacterial activity of metabolites produced by different ecotypes (strains) of the model mosses Physcomitrium patens and Sphagnum fallax. Ethanol and hexane moss extracts harbor moderate but unstable antibacterial activity, representing polar and non-polar intracellular moss metabolites, respectively. In contrast, high antibacterial activity that was relatively stable was detected in soluble exudate fractions of P. patens moss. Antibacterial activity levels in P. patens exudates significantly increased over four weeks of moss cultivation in liquid culture. Interestingly, secreted moss metabolites are only active against a number of Gram-positive, but not Gram-negative, bacteria. Size fractionation, thermostability and sensitivity to proteinase K assays indicated that the secreted bioactive compounds are relatively small (less than <10 kDa). Further analysis and molecular identification of antibacterial exudate components, combined with bioinformatic analysis of model moss genomes, will be instrumental in the identification of specific genes involved in the bioactive metabolite biosynthesis.

13.
Arch Microbiol ; 204(6): 336, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35587838

RESUMO

Genomic and metabolomic studies of endolithic bacteria are essential for understanding their adaptations to extreme conditions of the rock environment and their contributions to mineralization and weathering processes. The endoliths of arid serpentine rocks are exposed to different environmental stresses, including desiccation and re-hydration, temperature fluctuations, oligotrophy, and high concentrations of heavy metals. Bacteria of the genus Rhodococcus commonly inhabit endolithic environments. Here, we describe genomic and metabolomic analyses of the non-pathogenic wild-type Rhodococcus fascians strain S11, isolated from weathered serpentine rock at the arid Khalilovsky massif, Russia. We found that strain S11 lacks the virulence plasmid that functions in the phytopathogenecity of some R. fascians strains. Phenotypic profiling revealed a high pH tolerance, phytase activity and siderophore production. A widely untargeted metabolome analysis performed using an Orbitrap LC-MS/MS method demonstrated the presence of chrysobactin-type siderophores in the culture medium of strain S11. The natural variation of secondary metabolites produced by strain S11 might provide a practical basis for revealing antibacterial, fungicide or insecticidal activities. Finally, plant infection and plant growth stimulation studies showed no observable effect of exposure strain S11 bacteria on the aerial and root parts of Arabidopsis thaliana plants. Based on our findings, R. fascians strain S11 might be promising tool for investigations of organo-mineral interactions, heavy metal bioremediation, and mechanisms of bacterial mediated weathering of plant-free serpentine rock to soil.


Assuntos
Arabidopsis , Rhodococcus , Arabidopsis/microbiologia , Cromatografia Líquida , Genômica , Plantas/microbiologia , Rhodococcus/genética , Rhodococcus/metabolismo , Sideróforos/metabolismo , Espectrometria de Massas em Tandem
14.
Genes (Basel) ; 13(3)2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35327964

RESUMO

Whole-genome sequencing of a soil isolate Bacillus pumilus, strain 7P, and its streptomycin-resistant derivative, B. pumilus 3-19, showed genome sizes of 3,609,117 bp and 3,609,444 bp, respectively. Annotation of the genome showed 3794 CDS (3204 with predicted function) and 3746 CDS (3173 with predicted function) in the genome of strains 7P and 3-19, respectively. In the genomes of both strains, the prophage regions Bp1 and Bp2 were identified. These include 52 ORF of prophage proteins in the Bp1 region and 38 prophages ORF in the Bp2 region. Interestingly, more than 50% of Bp1 prophage proteins are similar to the proteins of the phi105 in B. subtilis. The DNA region of Bp2 has 15% similarity to the DNA of the Brevibacillus Jimmer phage. Degradome analysis of the genome of both strains revealed 148 proteases of various classes. These include 60 serine proteases, 48 metalloproteases, 26 cysteine proteases, 4 aspartate proteases, 2 asparagine proteases, 3 threonine proteases, and 2 unclassified proteases. Likewise, three inhibitors of proteolytic enzymes were found. Comparative analysis of variants in the genomes of strains 7P and 3-19 showed the presence of 81 nucleotide variants in the genome 3-19. Among them, the missense mutations in the rpsL, comA, spo0F genes and in the upstream region of the srlR gene were revealed. These nucleotide polymorphisms may have affected the streptomycin resistance and overproduction of extracellular hydrolases of the 3-19 strain. Finally, a plasmid DNA was found in strain 7P, which is lost in its derivative, strain 3-19. This plasmid contains five coding DNA sequencing (CDS), two regulatory proteins and three hypothetical proteins.


Assuntos
Bacillus pumilus , Bacillus pumilus/genética , Nucleotídeos , Peptídeo Hidrolases , Prófagos/genética , Estreptomicina
15.
Int. microbiol ; 25(1): 111-122, Ene. 2022. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-216016

RESUMO

In current times, the opportunistic pathogen Morganella morganii is increasingly becoming a cause of urinary tract infections. The condition has been further complicated by the multiple drug resistance of most isolates. Swimming motility plays an important role in the development of urinary tract infections, allowing bacteria to colonize the upper urinary tract. We determined the differences between the growth, swimming motility, and biofilm formation of two M. morganii strains MM 1 and MM 190 isolated from the urine of patients who had community-acquired urinary tract infections. MM 190 showed a lower growth rate but better-formed biofilms in comparison to MM 1. In addition, MM 190 possessed autoaggregation abilities. It was found that a high temperature (37 °C) inhibits the flagellation of strains and makes MM 190 less motile. At the same time, the MM 1 strain maintained its rate of motility at this temperature. We demonstrated that urea at a concentration of 1.5% suppresses the growth and swimming motility of both strains. Genome analysis showed that MM 1 has a 17.7-kb-long insertion in flagellar regulon between fliE and glycosyltransferase genes, which was not identified in corresponding loci of MM 190 and 9 other M. morganii strains with whole genomes. Both strains carry two genes encoding flagellin, which may indicate flagellar antigen phase variation. However, the fliC2 genes have only 91% identity to each other and exhibit some variability in the regulatory region. We assume that all these differences influence the swimming motility of the strains.(AU)


Assuntos
Humanos , Ilhas Genômicas , Virulência , Fatores de Virulência , Morganella morganii , Microbiologia
16.
Int Microbiol ; 25(1): 111-122, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34363151

RESUMO

In current times, the opportunistic pathogen Morganella morganii is increasingly becoming a cause of urinary tract infections. The condition has been further complicated by the multiple drug resistance of most isolates. Swimming motility plays an important role in the development of urinary tract infections, allowing bacteria to colonize the upper urinary tract. We determined the differences between the growth, swimming motility, and biofilm formation of two M. morganii strains MM 1 and MM 190 isolated from the urine of patients who had community-acquired urinary tract infections. MM 190 showed a lower growth rate but better-formed biofilms in comparison to MM 1. In addition, MM 190 possessed autoaggregation abilities. It was found that a high temperature (37 °C) inhibits the flagellation of strains and makes MM 190 less motile. At the same time, the MM 1 strain maintained its rate of motility at this temperature. We demonstrated that urea at a concentration of 1.5% suppresses the growth and swimming motility of both strains. Genome analysis showed that MM 1 has a 17.7-kb-long insertion in flagellar regulon between fliE and glycosyltransferase genes, which was not identified in corresponding loci of MM 190 and 9 other M. morganii strains with whole genomes. Both strains carry two genes encoding flagellin, which may indicate flagellar antigen phase variation. However, the fliC2 genes have only 91% identity to each other and exhibit some variability in the regulatory region. We assume that all these differences influence the swimming motility of the strains.


Assuntos
Morganella morganii , Infecções Urinárias , Humanos , Morganella morganii/genética , Variação de Fase , Regulon , Natação
17.
3 Biotech ; 11(3): 126, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33643761

RESUMO

We investigated the effect of the strain Bacillus subtilis GM5 on growth, feed conversion, and the composition of cecum microbiota in broiler chickens. Half of which received a control diet, while the other half was fed a diet supplemented with GM5 spores. Cecal contents on days 1, 10, and 42 were subjected to metataxonomic analysis. Principal Component Analysis showed that the control and probiotic groups formed three separate clusters, indicating changes, which occurred gradually in microbial communities. On day 1, Firmicutes (53.87-57.61%) and Proteobacteria (43.77-38.93%) were prevalent in both groups, whereas samples of days 10 and 42 were predominantly occupied by Firmicutes (54.55-81.79%) and Bacteroidetes (26.94-30.45%). In the group of chickens treated with probiotic, the average daily gain in body weight was higher, while feed conversion decreased by 1.44%. A surge in the presence of beneficial bacteria of the Ruminococcaceae family was observed. The introduction of the probiotic led to an elevated Firmicutes/Bacteroidetes ratio, which positively correlated with chickens' bodyweight (Spearman ρ = 1.0, P < 0.05). Supplementing broiler feed with B. subtilis GM5 spores leads to improved feed intake and digestibility, which is paramount in reducing the cost of the final product. Thus, the probiotic strain GM5 modulates the cecal microbiota of broiler chickens and increases microbial diversity, which is well exhibited on the 42nd day. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-020-02634-2.

18.
mSphere ; 6(2)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692192

RESUMO

Serratia marcescens is an emerging pathogen with increasing clinical importance due to its intrinsic resistance to several classes of antibiotics. The chromosomally encoded drug efflux pumps contribute to antibiotic resistance and represent a major challenge for the treatment of bacterial infections. The ABC-type efflux pump MacAB was previously linked to macrolide resistance in Escherichia coli and Salmonella enterica serovar Typhimurium. The role of the MacAB homolog in antibiotic resistance of S. marcescens is currently unknown. We found that an S. marcescens mutant lacking the MacAB pump did not show increased sensitivity to the macrolide antibiotic erythromycin but was significantly more sensitive to aminoglycoside antibiotics and polymyxins. We also showed that, in addition to its role in drug efflux, the MacAB efflux pump is required for swimming motility and biofilm formation. We propose that the motility defect of the ΔmacAB mutant is due, at least in part, to the loss of functional flagella on the bacterial surface. Furthermore, we found that the promoter of the MacAB efflux pump was active during the initial hours of growth in laboratory medium and that its activity was further elevated in the presence of hydrogen peroxide. Finally, we demonstrate a complete loss of ΔmacAB mutant viability in the presence of peroxide, which is fully restored by complementation. Thus, the S. marcescens MacAB efflux pump is essential for survival during oxidative stress and is involved in protection from polymyxins and aminoglycoside antibiotics.IMPORTANCE The opportunistic pathogen Serratia marcescens can cause urinary tract infections, respiratory infections, meningitis, and sepsis in immunocompromised individuals. These infections are challenging to treat due to the intrinsic resistance of S. marcescens to an extensive array of antibiotics. Efflux pumps play a crucial role in protection of bacteria from antimicrobials. The MacAB efflux pump, previously linked to efflux of macrolides in Escherichia coli and protection from oxidative stress in Salmonella enterica serovar Typhimurium, is not characterized in S. marcescens We show the role of the MacAB efflux pump in S. marcescens protection from aminoglycoside antibiotics and polymyxins, modulation of bacterial motility, and biofilm formation, and we illustrate the essential role for this pump in bacterial survival during oxidative stress. Our findings make the MacAB efflux pump an attractive target for inhibition to gain control over S. marcescens infections.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Estresse Oxidativo , Polimixinas/farmacologia , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/genética , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla , Serratia marcescens/metabolismo
19.
Arch Microbiol ; 203(2): 855-860, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33025059

RESUMO

The success of members of the genus Rhodococcus in colonizing arid rocky environments is owed in part to desiccation tolerance and an ability to extract iron through the secretion and uptake of siderophores. Here, we report a comprehensive genomic and taxonomic analysis of Rhodococcus qingshengii strain S10 isolated from eathered serpentine rock at the arid Khalilovsky massif, Russia. Sequence comparisons of whole genomes and of selected marker genes clearly showed strain S10 to belong to the R. qingshengii species. Four prophage sequences within the R. qingshengii S10 genome were identified, one of which encodes for a putative siderophore-interacting protein. Among the ten non-ribosomal peptides synthase (NRPS) clusters identified in the strain S10 genome, two show high homology to those responsible for siderophore synthesis. Phenotypic analyses demonstrated that R. qingshengii S10 secretes siderophores and possesses adaptive features (tolerance of up to 8% NaCl and pH 9) that should enable survival in its native habitat within dry serpentine rock.


Assuntos
Rhodococcus/enzimologia , Rhodococcus/genética , Sideróforos/metabolismo , Clima Desértico , Meio Ambiente , Genoma Bacteriano/genética , Ferro/metabolismo , Peptídeo Sintases/genética , Prófagos/genética , Federação Russa
20.
Front Microbiol ; 11: 1782, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849401

RESUMO

Bacillus spp. are an affordable source of enzymes due to their wide distribution, safety in work, ease of cultivation, and susceptibility to genetic transformations. Researchers are particularly interested in proteolytic enzymes, which constitute one of the most diverse groups of microbial proteins in terms of properties. Despite the long history of their research, this group of enzymes continue to show great potential for practical application in the biomedical industry, as well as in the agricultural industry. Thus, the unique properties of bacillary proteinases, such as stability in a wide range of temperatures and pH, high specificity, biodegradability of a wide range of substrates, and the high potential of sequenced Bacillus genomes are a powerful foundation for the development of new biotechnologies. The current review aims to discuss recent studies on various enzymes in particular, proteinases produced by bacteria of the genus Bacillus, along with their prospective practical applications. This article also presents an interpretive summary of the recent developments on the usage of probiotic Bacillus strains as potential feed additives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...